Use of allele specific RT-qPCR to measure the differential infectivity of [E:"%

BT

HA variants in human infection models using A/Wisconsin/67/2005. =

AVIVO

better treatments, faster

Ted Murray, Martin Reed, Dan Fullen, Peter Sargent, Andrew Catchpole and Rob Lambkin-Williams.

Background

The A/Wisconsin/67 /2005 strain has been used extensively in human viral challenge models (\WVCM). The HAT coding region of A/Wisconsin/67/2005 has a natural single nucleotide polymorphism (SNP) at position 156, generating a 50:50 mixture of HA con-
taining either a histidine (HA-H156) or glutamine (HA-Q156) at this position. This SNP is known fo contribute to antigenic drift and be susceptible to egg-adapted mutations contributing to a marked decrease in vaccine effectiveness during the 2012-2013 season.
Due to the proximity of the SNP to the receptor binding region in the globular head of HA, it is of interest to monitor any potential differences in infectivity between the HA-H172 and the HA-Q172 variant strains within the A/Wisconsin inoculum using the human viral
challenge model (hVCM). We have designed Tagman probes enabling 100% discrimination between HA-H172 and HA-Q172 as a first step to analyzing the distribution of the SNP during late stages of infection. This approach allows extremely rapid quantitation of

SNP (assay turnaround time of 1 day) when compared to deep sequencing techniques.

Introduction

A/Wisconsin/67 /2005 grown in VERO cells has a SNP in HAT at position 172 in HA1. This corresponds to amino acid 156 in the mature
HAT1 protein.

Figure 1. The HA sequence of an in-house A/Wisconsin/67/2005 strain is aligned with two reference
HA sequences from GenBank using the AlignX program. Only a partial comparison is shown.

(151) 151 160 170 180 190
A/Wisconsin/67/2005(143) TSSSCKRRSNNSFESRLNWLTXLKEKYPALNVTMPNNEKEDKLY T
EU103823 HA(151) TSSSCKRRSNNSFFSRLNWLTHLKFKYPALNVTMPNNEKEDKLY I(
CY034116 HA(151) TSSSCKRRSNNSFFSRLNWLTQLKEKYPALNVTMPNNEKEDKLY IW(
Consensug(151) TSSSCKRRSNNSFFSRLNWLT LKFKYPALNVTMPNNEKFDKLY IW(

Sequence analysis of HA shows the SNP is present at a 50:50 ratio. A 5log TCID50/mL inoculum of virus was prepared for use in the hVCM.
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Optimisation of allelic qPCR reagents provide 100%
discrimination between HA-H156 and HA-Q156 variant
sequences.

A/Perth/16/2009 influenza only has HA-H156 present and provides a useful control for the allelic specificity of the PCR reagents.

00 510 520 530 540 550 5
A/Wisc/67/05 ACAGTTTCTTTAGTAGATTGAATTGGTTGACCCAMITARAATTCARATACCCAGCATTGA
A/Perth/16/09 ACAGTTTCTTTAGTAGATTGAATTGGTTGACCCACTTARACTTCAARATACCCAGCATTGA
\ACAGTTTCTTTAGTAGATTGAATTGGTTGACCCA f‘TAA.F\ TTCAAATACCCAGCATTGA

AlWisc A/Perth
HAQ156 probe TTGACCCAATTAA ~50% 0%
HAH156 probe TTGACCCACTTAA ~50% 100%

(M at 536 bp = adenine or cytosine)

We designed two probes to target the SNP at 536 bp: HA-Q156 recognises adenine and probe HA-H156 recognises cytosine. The probe is
designed to position the mismatch within the intercalation region of the minor groove binding (MGB) moiety such that the combination of
decreased probe length and lack of MGB binding affinity provides the molecular mechanism for 100% allelic discrimination (Kutyavin et al,
2000). The prediction would be for A/Wisconsin to be detected by BOTH probes but A/Perth/16,/2009 to be detected ONLY by the
HA-H156 probe.

Figure 2 . Total RNA was extracted from log dilutions of noted virus stocks, set up in triplicate using
the allelic specific probes.
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QOur conclusion is that only the HA-H156 probe recognises A/Perth RNA and HA-Q156 does not bind at all as predicted. Note that the Ct
values for both HA-H156 and HA-Q156 on A/Wisconsin extracted RNA are equivalent confirming the ~50:50 ratio of the two HA variants
identified by sequencing.

HA-H156 and HA-Q156 exhibit altered viral profiles during
infection.
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8 The inoculum virus was analysed in parallel to confirm that the HA variants
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using either HA-H156probes, HA-Q156 probes or
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The viral shedding profile of 3 successfully inoculated human volunteers in
i shown in Figure 4. All 3 volunteers were inoculated at Day O and NPS samples
were collected 3 times daily for volunteers 1102, 2403 and 1206. Each
volunteer enters daily symptoms in a diary. The matrix (MA) probe is able to
detect and quantitate both HAQ156 and HAH156 viral variants and therefore

gives a measure of overall total viral load.
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The HAH156 probe and the ‘flu matrix (MA) probe gave essentially identical
AUC data for TCID50/mL equivalents per day for both volunteers.

Volunteer 2403

Strikingly, the egg adapted HAQ156 variant showed log10-fold reductions in
viral RT-qPCR signal at early stages of viral challenge (day 1 mid-day and day
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2 morning) for all volunteers. The effect is most evident in volunteers 1102 and
2403 with no replication of HAQ156 variant virus observed at day 2-3 despite
peak viral loads observed for the HAH156 variant.
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Summary

1. hVIVO has developed allele specific PCR assay technology with a high degree of specificity to track poly
morphic HA variants during infection

. A/Wisconsin/67 /2005 grown on VERO cells has a 50:50 ratio of HA-H156 and HA-Q156 variants.
The HA-Q156 variant is a well known egg adapted mutation.

. The ratio of HA-Q156 egg adapted variant has a much lower viral load compared to the HA-H156
variant in the same inoculum bolus. Interestingly, the influenza symptoms map to the viral peak of the
HA-Q156 variant and not the HA-H156.

. The use of matrix RT-qPCR probes avoids the variation in measuring viral loads due to HA SNPs.

. It is unclear whether the impact of the SNP at 156 is directly responsible for differential viral replication
kinetics but we note the close proximity of this SNP to the HA receptor binding site (Koel et al, 2013).
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Background

The RSV life-cycle within infected airway epithelial cells utilises positive sense (+ve sense) RNA replicative intermediates (Rls) including antigenome and mRNA transcripts for replication and viral protein synthesis respectively. hVIVO have now developed a

strand-specific RT-qPCR assay to quantify specifically the active intra-cellular +ve sense RSV Rl present in successfully infected epithelial cells. We demonstrate specific defection of <0.1 % +ve sense RI RSV in 99.9% virion genomic RSV mixtures with a lower limit of

quantitation of RI RSV at 10 copies/assay well. Furthermore we have used the strand specific RI RSV RT-qPCR assay to generate area-under-the-curve (AUC) profiles using the cellular component of nasal washes collected from infected human volunteers and

significantly different profiles of RI RSV AUC profile compared to total RSV AUC. Furthermore, the RI RSV AUC closely resembles infectious viral AUC generated by cell-based plaque assay data.

Introduction
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Figure 1: RSV replicative cycle
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Figure 2: Nasal wash samples from RSV
inoculated volunteers were analysed by
RT-qPCR (solid line, filled triangles), and
plaque assay (broken line, empty circles)
and plotted against collection time. (shaded
towers equals symptoms score.)

RSV replicates through +ve sense stand replicative
RNA intermediates (RI) in infected patients
(Figure 1).

The area-under-the curve (AUC) data for RSV
replication in RSV infected human volunteers is
measured by total RT-qPCR detecting mainly ex-
tra-cellular genomic RNA (-ve strand). It is
well-known that RSV AUC RT-gPCR curve has an
exaggerated increase at late infection compared
to plaque assay AUC data (Figure 2), This is
caused by accumulation of non-inhibitible,
replicative-defective particles. This late-stage AUC
surge confounds antiviral efficacy determination of

test compounds targeting RSV replication.

We hypothesise that measurement of intra-cellular
RI' RSV by RT-gPCR gives a fast, sensitive measure

of antiviral efficacy.

Strand Specific reverse transcription (RT)-qPCR
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Figure 3 Scheme for strand specific RT-qPCR
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Figure 4: Strand specific RT-qPCR was
performed on in vitro RNA mixtures at
different ratios (see inset table).

In vitro RNA copies of the RSV target region were
synthesised in both +ve sense (RI) and —ve sense
(genomic) orientations. Mixtures were made to
generate 0.1% Rl in genomic RNA background to
0.1% genomic in Rl background (see mixture
columns). Strand-specific RT-qPCR was performed
on all the mixtures (see Figure 4).

Note the Ct difference between the 0.1% RI and
genomic is Ct = 9, as expected for 3 log
concentration change in template demonstrating
100% SPECIFICITY STRAND DETECTION.

The lower limit of quantitation for the RI-RSV
RT-gPCR assay is 10 copies/rxn

RI-RNA strand specific RT-qPCR assay in RSV infected humans
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CONCLUSION

1. TWO independent anti-viral efficacy measurements from ONE
clinical sample is possible.

Cell pellet —> RI-RSV specific RT-qPCR

Supernatant = total RT-gPCR (totRSV).

2. RI-RSV AUC profile is very similar to plaque assay.
Replicative/mRNA RSV has short t%2 and rapid turnover whereas the genomic RSV
in extracellular virion is stable. The totfRSV AUC in late stage infection likely due to
accumulation of replication-incompetent or neutralised with bound IgG. Either way,
the intra-cellular RIRSY AUC appears to reflect behaviour of of replication

competent virions plaque-forming RSV.

3. RI-RSV AUC metric for virus replication inhibitors.
Unlike the plaque assay; no confounding cytotoxic IMP effects will be observed in
RT-gPCR format. The RI-RSY AUC may be a more sensitive metric for anti-viral

efficacy. The RIRSV assay has a faster turnaround time compared to plaque assay

hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre,
42 New Rd, London E1 2AX. England. UK.

www.hvivo.com

Molecular Med Tri-Con

San Francisco, CA
7-9 Mar 2016




